Chapter IR:III

lIl. Retrieval Models

Iy Iy A Iy Ny

U U

Overview of Retrieval Models
Boolean Retrieval

Vector Space Model

Binary Independence Model
Okapi BM25

Divergence From Randomness
Latent Semantic Indexing
Explicit Semantic Analysis
Language Models

Combining Evidence
Learning to Rank

IR:llI-147 Retrieval Models

©HAGEN/POTTHAST/STEIN 2023

Language Models
Background

Language models in general include methods to represent the syntactical structures
of languages to study them, and to solve natural language processing tasks.

A key goal of modeling a language is to solve the membership problem:
Given a string and a language, decide whether the string belongs to the language.

Two complementary approaches have been pursued:

o Formal languages
Theoretical approach with an explicit grammar specification and applications in comparably
small, controlled languages (e.g., query languages, programming languages).

o Statistical language models
Probabilistic approach where grammar is captured only implicitly by analyzing large text
collections. Can be applied in less controlled situations.

Important applications of statistical language models:
o Part-of-speech tagging o Speech and handwriting recognition
o Machine translation o Information retrieval

Language Models
Basics: Grammar

o Alphabet X.

o Word w.

o Language L.

o Grammar G.

Language Models
Basics: Grammar

o Alphabet ¥..
An alphabet X is a non-empty set of signs or symbols.

o Word w.

A word w is a finite sequence of symbols from X. The length of a word |w]| is
the number of symbols it is made of.

e denotes the empty word; it is the only word of length 0.
>.* denotes the set of all words over >..

o Language L.
A language L is a set of words over an alphabet ..

o Grammar G.
A grammar G is a calculus to define a language—and a set of rules by which
words can be derived. The language corresponding to G contains all words
that can be generated using its rules.

IR:11I-150 Retrieval Models ©HAGEN/POTTHAST/STEIN 2023

Language Models
Example: Deterministic Language Model

Grammar (G; as deterministic finite automaton:

Generated language:
o L(G;) ={Simon says stop}

o How to allow for other “Simon says” sentences?

Language Models
Example: Deterministic Language Model

Grammar (G» as deterministic finite automaton:

Generated language:

0 Let verb = {jump, run, ...} denote the set of all verbs.

o L(G2) contains Simon says sentences, e.g.:

Simon says jump, Simon says run,

Q |L(Gq)| = |verb]

Language Models
Example: Deterministic Language Model

Grammar (G» as deterministic finite automaton:

Generated language:

0 Let verb = {jump, run, ...} denote the set of all verbs.

o L(G2) contains Simon says sentences, e.g.:

Simon says jump, Simon says run,
Q |L(Gq)| = |verb]

a Isthe sentence Simon says science member of L(G5)?

Language Models
Example: Deterministic Language Model

Grammar (G» as deterministic finite automaton:

Generated language:

a

a

Let verb = {jump, run, ...} denote the set of all verbs.

L(G2) contains Simon says sentences, e.g.:

Simon says jump, Simon says run,
|L(G2)| = |verb|
Is the sentence Simon says science member of L(G3)?

I’'m gonna have to science the shit out of this.
Mark Watney in The Martian

Allowing every word would still result in exceedingly sentences.

Language Models
Example: Statistical Language Model

Grammar G5 as automaton:

weT P(w)

m jump 0.05
—(Simon =® > run 0.03

science 0.002

where w is a random variable over a vocabulary T'.

Generated language:

o L(Gs) contains every three-word sentence starting with Simon says
followed by a word w from T" with probability P(w) > 7 where 7 is a threshold.

o Put another way, G3 maps every sentence s that can be formed over its
vocabulary X to a probability P(s) so that

Y Ps)=1

sEX*

In general, probabilistic automata can be used to generate arbitrary documents.

Language Models
Example: Statistical Language Model

Grammar (G, as probabilistic automaton:
weT Plw) weT P(w)

1 0.2 likes 0.02
— the 0.2 Simon 0.01
a 0.1 Mark 0.01
that 0.04 science 0.002
says 0.03 :

where w is a random variable over a vocabulary T'.

Generated language:

o 1 denotes the probability that the automaton stops.

o L(G,) contains all sentences that can be formed over the vocabulary T,
assigning a membership probability to each one, e.g.:
s = Simon says that Mark likes science L
P(s) =0.01-0.03-0.04-0.01-0.02-0.01-0.2 = 0.0000000000048 = 4.8 - 1072

0 Suppose every document were generated by its own language model d.

=» Given aquery q, P(d; | ¢) > P(ds | ¢) may indicate that d; is more relevant to
g than d.

Language Models

Document representations D.

Query representations Q.

Relevance function p.

https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-retrieval-models.pdf#ir-model
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-unigram-models1.pdf#boolean-retrieval-model
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-unigram-models1.pdf#vector-space-model
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-unigram-models2.pdf#binary-independence-model
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-unigram-models2.pdf#okapi-bm25
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-embedding-models.pdf#latent-semantic-indexing
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-embedding-models.pdf#explicit-semantic-analysis

Language Models

A~ T A T amaaan T AT T A

Document representations D.

o T ={ty,...,t,} is the set of m index terms (stemmed words).
o p(t | d)is the probability of generating ¢ given d.
o d={(ty,p(t1 | d),...,(tm,ptn | d))} is a probability distribution over 7.

Query representations Q.

a q=(t1,...,t), Where t; € T, is a sequence of index terms.

Relevance function p.
o p(d,q) = P(d | q), the query likelihood model.

o RTis a set of documents relevant to ¢ obtained via relevance feedback.
a R*={(ty,pts | R"),...,(tm,p(t,, | RT))} is @ probability distribution over 7.

o p(d,q) = vrr(d,R"), the relevance model.

IR:I-173 Retrieval Models ©HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-retrieval-models.pdf#ir-model
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-unigram-models1.pdf#boolean-retrieval-model
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-unigram-models1.pdf#vector-space-model
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-unigram-models2.pdf#binary-independence-model
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-unigram-models2.pdf#okapi-bm25
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-embedding-models.pdf#latent-semantic-indexing
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-embedding-models.pdf#explicit-semantic-analysis

Language Models
Relevance Function p: Derivation

Let d denote a language model for document d, and q the sequence of query terms
from query ¢. Then the query likelihood model is derived as follows:

_ Plq]d)- P(d)

P(d|q) Plq

(1) Application of Bayes’ rule.

Language Models
Relevance Function p: Derivation

Let d denote a language model for document d, and q the sequence of query terms
from query ¢. Then the query likelihood model is derived as follows:

_ Plq]d)- P(d)

P(d|q) Plq

= P(q|d)- P(d) (2)

(1) Application of Bayes’ rule.

(2) Rank-preserving omission of P(q); it does not depend on d.

Language Models
Relevance Function p: Derivation

Let d denote a language model for document d, and q the sequence of query terms
from query ¢. Then the query likelihood model is derived as follows:

Pd|q = 1 ‘]f(ll')P () 1)
= p(q|d)- P(d) @)
_ Plq]d) @)

(1) Application of Bayes’ rule.
(2) Rank-preserving omission of P(q); it does not depend on d.

(3) Assume P(d) is uniform for all d € D, thereby canceling its influence.

This assumption is not required; as a prior, P(d) can be used as a weight of relative
importance of d (e.g., PageRank, quality, etc.).

Language Models
Relevance Function p: Derivation

Given a language model d of document d and a sequence q of the terms in query g,

compute the probability that q has been generated by d.

P(g|d) = P(ti, ..., ty|d) (4)

(4) Inflating q.

Language Models
Relevance Function p: Derivation

Given a language model d of document d and a sequence q of the terms in query g,
compute the probability that q has been generated by d.

P(g|d) = P(ti, ..., ty|d) (4)

lq|

= [[Pt d) (5)
=1

(4) Inflating q.

(5) Assuming independence between terms.

Language Models
Relevance Function p: Derivation

Given a language model d of document d and a sequence q of the terms in query g,
compute the probability that q has been generated by d.

P(g|d) = P(ti, ..., ty|d) (4)
[

=D log P(ti | d) (5)
=1

= [[Pe|ao (6)

(4) Inflating q.

(5) Assuming independence between terms.
Rank-preserving logarithmization to handle small probabilities.

(6) Combine duplicate occurrences of term ¢ in query q.
This corresponds to the multinomial distribution, albeit omitting its factor |d|/ [[, (¢,),
which counts the permutations of ¢’s terms but is constant for g¢.

Language Models
Relevance Function p: Estimation

Let ¢t denote a term from the set of index terms 1" of document collection D. The
construction of a language model d to represent document d is done as follows.

Pit|d) = , where > P(t|d)=1 (7)

teT

(7) Maximum likelihood estimation of ¢’s probability under the assumed language
model d for document d’s topic, given the observed sample d.
Problem: P(t | d) =0fort ¢ d, causing P(q |d) =0ift € q.

Language Models
Relevance Function p: Estimation

Let ¢t denote a term from the set of index terms 1" of document collection D. The
construction of a language model d to represent document d is done as follows.

Pit|d) = tf(@"d), where 3" P(t|d) =1 (7)
teT

Pit|D) = Zgl?”(z’d), where) P(t|D)=1 (8)
deD teT

(7) Maximum likelihood estimation of ¢’s probability under the assumed language
model d for document d’s topic, given the observed sample d.
Problem: P(t | d) =0fort ¢ d, causing P(q |d) =0ift € q.

(8) Maximum likelihood estimation of ¢’s probability in a language model D for D.

Language Models
Relevance Function p: Estimation

Let ¢t denote a term from the set of index terms 1" of document collection D. The
construction of a language model d to represent document d is done as follows.

pild) = o iig'd), where 3" P(t|d) =1 (7)
teT

Pit|D) = ZED a (Zyd)’ where) P(t|D)=1 (8)
deD teT

Pt|d) = (1—=X-P(t|d) + \-P(t|D) (9)

(7) Maximum likelihood estimation of ¢’s probability under the assumed language
model d for document d’s topic, given the observed sample d.
Problem: P(t | d) =0fort ¢ d, causing P(q |d) =0ift € q.

(8) Maximum likelihood estimation of ¢’s probability in a language model D for D.

(9) Jelinek-Mercer . linear interpolation of language models d and D.

Language Models
Relevance Function p: Estimation

Taking into account the length of a document d yields an alternative smoothing
method.

Pt|d) = (1-)\)-P(t|d) + \ P(t|D) (9)

(9) Jelinek-Mercer smoothing: linear interpolation of language models d and D.

Language Models
Relevance Function p: Estimation

Taking into account the length of a document d yields an alternative smoothing
method.

Pt|d) = (1-)\)-P(t|d) + \ P(t|D) (9)

el
Cd| +«

(9) Jelinek-Mercer smoothing: linear interpolation of language models d and D.

(10) Dirichlet smoothing: adjust A with respect to the length of document d. The
longer a document d, the more trustworthy its language model d becomes.

Language Models
Relevance Function p: Estimation

Taking into account the length of a document d yields an alternative smoothing
method.

Pit|d) = (1—)\)-P(t|d) + \-P(t|D) 9)
A d| + o (10)
Pl - t(t, d) |+d|a+. O]j(t]D) (1)

(9) Jelinek-Mercer smoothing: linear interpolation of language models d and D.

(10) Dirichlet smoothing: adjust A with respect to the length of document d. The
longer a document d, the more trustworthy its language model d becomes.

(11) Substitution of X in P(t |d)'.

Language Models
Relevance Function p: Example

Let ¢ = president lincoln andlet d; € D be a document from a collection D.

Assumptions:

0 tf(president,d;) =15 and), , tf(president,d) = 160, 000

0 tf(lincoln,d;) =25 and), ptf(lincoln,d) = 2,400

Q |di] =1,800 and |D|=1500,000 at |d|avg= 2,000, Yyielding 10°terms.
2 a = |dlag = 2,000

15+ 2000 - (1.6 - 10°/10%) 25 + 2000 - (2400/107)

p(di,q) = log + log

1800 4 2000 1800 + 2000
— log(15.32/3800) + log(25.005/3800)
— —5.51 + —5.02
= —10.53

Logarithmization yields negative relevance scores; recall that only the ranking
among documents is important, not the scores themselves.

Language Models
Relevance Function p: Example

Let ¢ = president lincoln andlet d; € D be a document from a collection D.

Assumptions:

0 tf(president,d;) =15 and), , tf(president,d) = 160, 000

0 tf(lincoln,d;) =25 and), ptf(lincoln,d) = 2,400

Q |di] =1,800 and |D|=1500,000 at |d|avg= 2,000, Yyielding 10°terms.
2 a = |dlag = 2,000

D president lincoln LM # BM25 #
d; 15 25 -10.53 1 20.66 1
do 15 1 3 12.74 4
ds 15 0 -19.05 5 5.00 5
dy 1 25 -12.99 2 18.20 2
ds 0 25 -14.40 4 3

Language Models
Relevance Function p: Summary

lq] tf(tl', d) 4o >_dep tf(ti,d)

p(d,q) = Pd|q P(d)-H !d|+oz2d€D|d|

Assumptions:

1. The user has a mental model of the desired document and generates the
query from that model.

2. The equation represents a probability estimate that the document the user
had in mind was in fact this one.

3. Independence of word occurrence in documents.

4. Terms not in query g are equally likely to occur in relevant and irrelevant
documents.

5. The prior P(d) may be chosen uniform for all documents, or to boost more
important documents.

Language Models
Discussion

Advantages:

o Mathematically precise, conceptually simple, computationally tractable, and
intuitively appealing

o Competitive retrieval performance

Disadvantages:

o Requires extensive tuning

o Assumption of equivalence between document and information need
representation is unrealistic

o Difficult to represent the fact that a query is just one of many possible queries
to describe a particular need

Word Embeddings

Overview

Goal:

Problem: How do we represent text so we can feed it to the neural network?

Word Embeddings

Overview

Goal:

Problem: How do we represent text so we can feed it to the neural network?

Solution: Turn words into numbers.

Word Embeddings
Representing Words

apples are great

Word Embeddings
Representing Words

apples are great

Assign each word a random value.

o apples - 6.3
o are - 35
o great =2 42

Word Embeddings
Representing Words

apples are great

apples are awesome

Assign each word a random value.

o apples - 6.3
o are - 35
o great =2 42
a awesome - -321

Word Embeddings
Representing Words

apples are great

apples are awesome

Assign each word a random value.

o apples - 6.3

o are - -35

o great =2 42

a awesome -2 -32.1
Problems:

0 great and awesome mean similar things and used in similar ways.
o They are likely to have very different values.
o Bad for neural networks, requiring more complexity and training.

Word Embeddings

Developing a Better Representation

How can we let similar words have similar values?

=» Learning how to use one word helps use the other at the same time.

Word Embeddings

Developing a Better Representation

How can we let similar words have similar values?

=» Learning how to use one word helps use the other at the same time.

Words can be used in many contexts, pluralised, and so on.

=» Assign each word multiple values for different contexts.

Word Embeddings

Developing a Better Representation

How can we let similar words have similar values?

=» Learning how to use one word helps use the other at the same time.

Words can be used in many contexts, pluralised, and so on.

=» Assign each word multiple values for different contexts.

How to decide which words are similar? How to learn multiple values?

=» Neural network + clever training.

Word Embeddings

Training a Neural Network

Training data: apples are great, bananas are great.

Word Embeddings

Training a Neural Network

Training data: apples are great, bananas are great.

Inputs Activations
apples
wq
are
Wa
Q/ W3
great

banan

)

o Four unique inputs, each corresponding to a word.
o Linear activation function does nothing, just a place to do addition.
o Weights randomly initialised and optimised with backpropagation.

Word Embeddings

Training a Neural Network

Training data: apples are great, bananas are great.

Inputs Activations

apples

o To represent words with multiple values, add additional activation functions.
o Each activation function is associated with another weight for each word.

Word Embeddings

Training a Neural Network

Training data: apples are great, bananas are great.

Inputs Activations Outputs

apples

are

softmax

ananas

(@)

=
@/ mg

Q

—

o Use input word to predict next word in phrase =» apples
o We want the largest output value after softmax to be the target word.
o Cross entropy loss with backpropagation to optimise weights.

Word Embeddings
Visualising Word Embeddings

is apples is apples
bananas

bananas q

great great

o Weights going into activation layer are the values associated with each word.
o When words appear in similar contexts, values (weights) become similar.

o All the weights for a given word are called the word embedding.

Word Embeddings

Summary

Word embeddings let us represent text as values for machine learning problems.
o Rather than using random values, use a neural network to learn values.

o Use context of words in training dataset to optimise weights for embeddings.

o Similar words get similar embeddings, which helps with training.

Problem: Just predicting the next word doesn’t provide much context.

Word Embeddings

word2vec

Continuous Bag of Words (CBOW)

=» Increase context by using surrounding words to predict what occurs in the middle.

neural
network

N4
TUNS

Word Embeddings

word2vec

Skip gram

=» Increase context by using word in the middle to predict surrounding words.

neural
network

74
Jobe

Word Embeddings

Efficiently Training word2vec

o In practice, there are hundreds of activation functions.
o And significantly more training data (e.g., all of Wikipedia).
o Vocabulary (input size) is much larger, typically 3,000,000 words and phrases.

Total weights to optimise:

3,000, 000 - 100 - 2 = 600, 000, 000

3M words, 100 activations (times 2 for input+output).

Solution: negative sampling.

Word Embeddings

Efficiently Training word2vec

Inputs Activations Outputs

aardvark

b

% \’ ‘ %o softmax
RO LA

R
7 AXN L

abandon

oY,

4

Word Embeddings

Efficiently Training word2vec

Inputs Activations Outputs

aardvark

b

softmax abandon

4

o Drop weights that do not contribute to prediction.
o Still left with over 300,000,000 weights to optimise.

Word Embeddings

Efficiently Training word2vec

Inputs Activations Outputs

a a

O

aardvark

O
\@
O

softmax

o Randomly select subset of words will be ‘negative’ samples.
0 a is still our target word, but now abandon is a negative sample.
o Now only need to optimise approximately 300 weights per step.

Question 1: How would you design a ranking function with word embeddings alone?

Question 2: How could you represent queries and documents with embeddings?

Question 3: How would you train a neural ranking model if you had query and document embeddings?
Relevant papers:

- https://dl.acm.org/doi/pdf/10.1145/2838931.2838936
- https://cs.stanford.edu/~quocle/paragraph_vector.pdf

Harry
Question 1: How would you design a ranking function with word embeddings alone?

Question 2: How could you represent queries and documents with embeddings?

Question 3: How would you train a neural ranking model if you had query and document embeddings?

Relevant papers:
- https://dl.acm.org/doi/pdf/10.1145/2838931.2838936
- https://cs.stanford.edu/~quocle/paragraph_vector.pdf

